

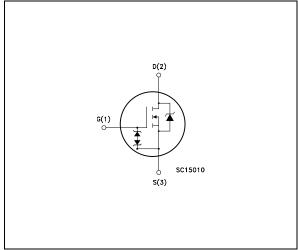
STW26NM50 N-CHANNEL 500V - 0.10Ω - 30A TO-247 MDmesh™ MOSFET

Table 1: General Features

ТҮРЕ	V _{DSS}	R _{DS(on)}	Ι _D
STW26NM50	500 V	< 0.120 Ω	30 A

- TYPICAL $R_{DS}(on) = 0.10 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- IMPROVED ESD CAPABILITY
- LOW INPUT CAPACITANCE AND GATE CHARGE

DESCRIPTION


The MDmesh[™] is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH[™] horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.

APPLICATIONS

The MDmesh[™] family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STW26NM50	STW26NM50 W26NM50		TUBE

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	500	V
V _{GS}	Gate- source Voltage	± 30	V
ID	Drain Current (continuous) at T _C = 25°C	30	А
ID	Drain Current (continuous) at T _C = 100°C	18.9	А
I _{DM} (•)	Drain Current (pulsed)	120	А
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	313	W
	Derating Factor	2.5	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=1.5KΩ)	6000	V
dv/dt (1)	Peak Diode Recovery voltage slope	15	V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150	°C

(•) Pulse width limited by safe operating area

(1) $I_{SD} \leq 26A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.4	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
ΤI	Maximum Lead Temperature For Soldering Purpose	300	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	13	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	740	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igss=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

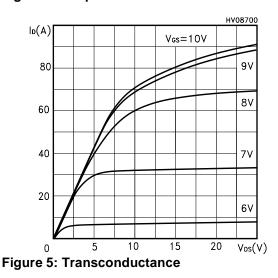
Table 7: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \text{ mA}, V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C			10 100	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			± 10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 13 A		0.10	0.12	Ω

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V_{DS} = 15 V , I_{D} = 13 A		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		3000 700 50		pF pF pF
C _{OSS eq} (3).	Equivalent Output Capacitance	$V_{GS} = 0 V, V_{DS} = 0 to 400 V$		300		pF
td(on) t _r td(off) t _f	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time			28 15 13 19		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}, I_D = 26 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 18)		76 20 36	106	nC nC nC

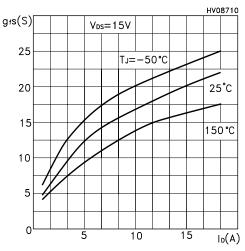
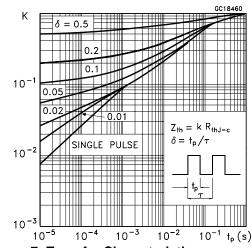
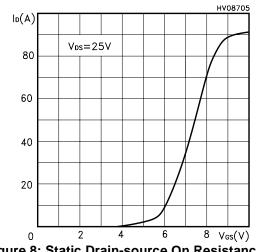
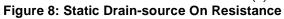
Table 9: Source Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				26 104	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 26 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 26 A, di/dt = 100 A/µs V _{DD} = 100V (see Figure 16)		400 5.5 27.8		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 26 A, di/dt = 100 A/µs V _{DD} = 100V, T _j = 150°C (see Figure 16)		492 7 28.8		ns µC A

(1) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area.
(3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

 $I_D(A)$ 10² 100µs 10¹ 1ms 10ms 1 0⁰ D.C. OPERATION Ш 10^{-1} 68 10¹ 10° 10² 10³ $V_{DS}(V)$

Figure 3: Safe Operating Area

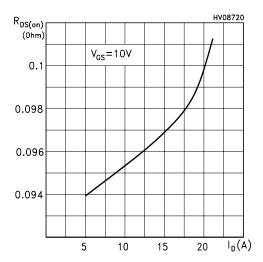

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

47/

Figure 9: Gate Charge vs Gate-source Voltage

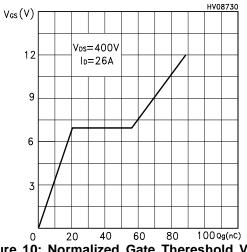


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

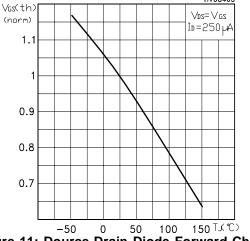
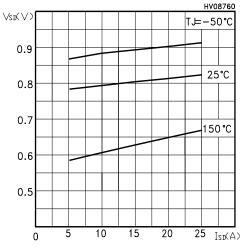



Figure 11: Dource-Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

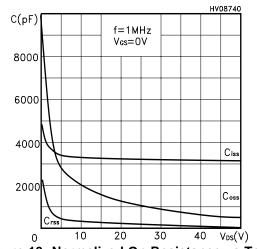
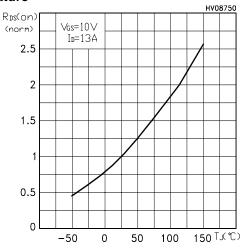



Figure 13: Normalized On Resistance vs Temperature

Figure 14: Unclamped Inductive Load Test Circuit

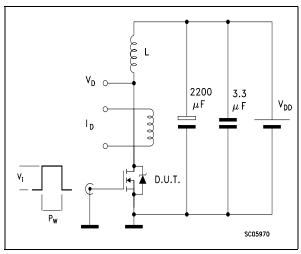


Figure 15: Switching Times Test Circuit For Resistive Load

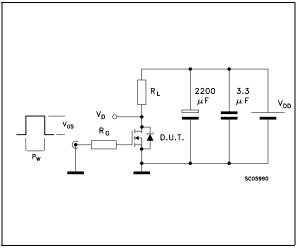
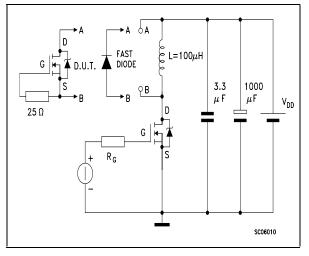



Figure 16: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 17: Unclamped Inductive Wafeform

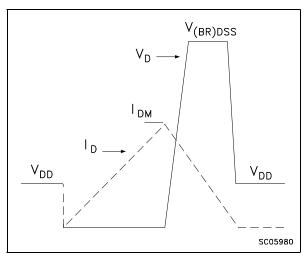
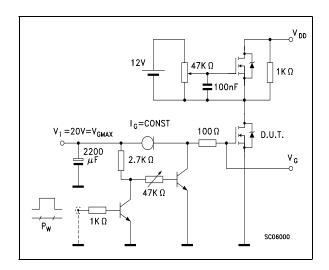
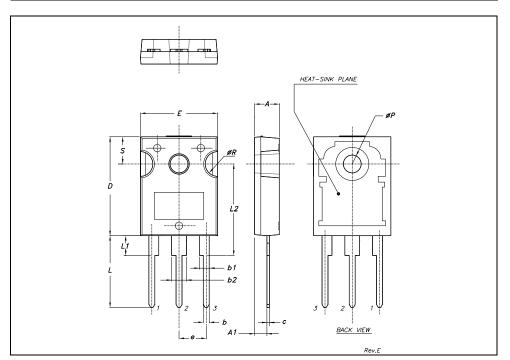




Figure 18: Gate Charge Test Circuit

DIM.		mm.			inch	
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øР	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 10: Revision History

Date	Revision	Description of Changes
24-June-2004	9	New Stylesheet.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America